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Abstract 

It in argued that, in fundamental string theories, M one tracea the 
universe back in time a point ie reached when the expansion rate is 80 
feat that the rate of string creation due to quantum effects balancea the 
dilution of the string deneity due to the expansion. One is therefore led 
intoa phase of constant string density and an exponentially expanding 
universe. Fundamental strings therefore seem to lead naturally to 
inflation. 
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At first sight the attractive idea that cosmic strings [1,2] or even fun- 

damental strings [3] played a role in cosmology appears not to go very 

naturally with the idea of inflation (41. Classically, during a period of ex- 

ponential expansion, any string present in the universe would simply be 

conformally stretched, its length growing as a, the scale factor. Since the 

volume of the universe scales as a3, the string density rapidly becomes neg- 

ligible. If one insists on inflation, the only way to have cosmic strings play 

a significant role is to form the strings at the end of or after an inflationary 

era [5,6]. However in this letter I shall show that for infinitely thin ‘funda- 

mental’ strings there is a more interesting possibility. Tracing the universe 

back into the past, quantum effects create string at a faster and faster rate 

until a point is reached where the string density approaches a constant. 

One is therefore automatically led back into a period of exponential expan- 

sion i.e. inflation. Far from being incompatible with inflation, fundamental 

strings seem to imply it! 

Independently of the present work, Aharonov et al [7] recently conjec- 

tured such a situation might occur, where the Hawking temperature of the 

initial De Sitter spacetime is equal to the string ‘limiting temperature’. 

The calculations I report here lend support to this coqjecture, although as 

I shall explain the exact numerical factors are difficult to check. 

In theories bssed on closed strings, such ss heterotic strings, there is a 

fundamental relation between Newton’s constant C, the string tension p 

and the gauge coupling constant g: Gg = gs/(32rr*) = 10W3 [8]. This is 

too large (but only just!) for these strings to exist today - one such string 

across the horizon would cause unacceptable distortion of the microwave 
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background[9]. However in the heterotic theories the fundamental strings 

become attached to axion domain walls at the QCD scale and thereafter 

rapidly diiappear[3] so there would be no such conflict with observation. In 

theories with both open and closed strings such sa the Type 1 superstring, 

Gp is proportional to (lr.l/R)3 where Id is the Plsnck length and R is the 

radius of the extra six dimensional space. There may even be models where 

Gp w lOme as required to form galaxies and clusters [lo] and the strings do 

not disappear. 

In any case I will ignore the interesting issue of whether fundamental 

strings can form galaxies like cosmic strings and merely assume that there 

were fundamental closed strings with Gp a: 1 present in the very early 

universe. I will also assume that compactii%ration, if necessary, hss occurred 

and only the four-dimensional string modes may be excited. I will ignore 

interactions except insofar as they allow the string network to reach thermal 

equilibrium - the string coupling constant is in any case not known, being 

determined by the expectation value of the dilaton field. 

Let me begin by reviewing what is known about string dynamics in sn 

expanding universe. At low densities the strings are well out of thermal 

equilibrium and a network of strings evolves just ss cosmic strings do Ill]. 

As one proceeds back in time the string density approaches a density p w 

jar and a phase transition occurs [12,13] where infinite Brownian strings 

and a scale invariant distribution of loops are formed. At this point the 

expansion time H-’ is (Gp)-‘Izp- U2 > p-1/z which is the typical scale 

on the string network. It seems safe therefore to assume that the strings 

have reached thermal equilibrium. The fact that fundamental strings have 

2 



a limiting temperature % PC! plays an interesting role here - it means that 

the radiation, so long as it is in thermal contact with the string, cannot 

attain a density higher than FY p* - so as the universe contracts it becomes 

string dominated. Note that whilst the canonical ensemble breaks down 

at these densities, the more fundamental microcanonicaI ensemble is still 

perfectly well dellned [12]. 

What happens at still higher densities? Let us begin by considering a 

single long straight string in an expanding background. I shall consider a 

De Sitter background for definiteness and calculational simplicity, but the 

string creation that occum would happen in any expanding background. 

The equation of motion for small transverse oscillations y(z, t) (y is the 

cornouing displacement) about a long straight string along the z axis is 

1141 

9+2119=ym (1) 

where3 sz g, y’ E E and I use coordinates in which the metric is confor- 

mally flat: ds2 = dt’ - a2dz2 = a2(q)(dq2 - dz’) with a = eR1 = -l/(Hq) 

where H is Hubbies constant and --a, < 11 < 0 is conformal time. (1) is 

exactly the same as the equation for a minimally coupled massless scalar 

field, which has been extensively studied in the context of inflation 1151. 

The solution to (1) is 

Y = l/d/~ C (akx:(rl)sWz) + aix;(s)sinkz) 
k=nr/L 

(2) 

for a straight string of length L and with ilxed endpoints. The canonical 

conjugate momentum is r = Paz+; imposing the canonical commutation 

relations yields [ok,ua#] = &,&I as long ss the mode function components 
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Xk(r]) are normalised by the conserved norm ia’(X;ik - i;xk) = 2/L. x: 

and x; are ‘positive’ and ‘negative’ frequency modes. xi is given in general 

by 

x: = (-tl)“‘*H(~)“*(clB:,*(-ktl) + c*fq,(-kv)) (3) 

and x; G XL’. Here H&,(z) = (6):(-l - i/z)e’“. Xk is correctly nor- 

maliied if ctc; - crc; = 1. The behaviour of a mode xk is very simple. 

As long as the physical wavelength ak-’ of a mode is inside the Hubble 

radius xk oscillates with constant physical amplitude oxk. As the physical 

wavelength grows it crosses the Hubble radius and the comouing amplitude 

xk becomes ‘frozen’, so the physical amplitude grows as a. Returning to 

(3), if we quantlse the modes and define the vacuum state by ok]0 >= 0, 

then different choices of vacuum correspond to different choices of ci and 

es. In De Sitter space the “adiabatic vacuum” or “Bunch Davies” vacuum 

is defined by cl = 1, es = 0 and this (Heisenberg) state is the state we shall 

assume our string is in [la]. 

In this state one calculates for example the mean square transverse 

displacement 

<y*>= J D&j* co oL 2 < OIY~(~)IO >= 2pr J 0 
dk(l+ 1 

k k3rp) 
(4) 

where the k sum has been replaced by an integral and I include D transverse 

modes. The Srst term ln (3) is the usual flat space divergence: the physical 

displacement y, = ayr has the same divergence $ J $ as in flat space. I 

subtract this divergence. The second term is a new divergence in curved 

spacetime. However considering it mode by mode in the context of a finite 

amount of exponential expansion it ls easily understood in the ‘adiabatic’ 

4 



subtraction scheme described in [IS] for example. Modes with k > EiY, 

where E is the total e-folding factor, are always within the Hubble radius 

and their amplitude is unaffected by the expansion. They are subtracted 

from (4). Modes with k < .H are always well outside the horizon and simply 

match on adiabatically to the modes before and after inflation. These are 

also subtracted. One therefore finds 

DE= E= dk D 
<y*>a- 

2pa R ks - G J (5) 

dominated by the lowest modes. One can picture this result by saying 

that the modes of order the Hubble radius in wavelength have a physical 

fluctuating ‘width’< yp2 >M i which gets amplified by the expansion after 

they pass out of the Hubble radius. Higher k modes have to wait longer to 

cross the Hubble radius (crossing at a = $) and so lose out in growth. 

More interestingly one can calculate the energy aquired by each mode 

in this process. For small ky the energy is given by [14] 

e = pa J dn(1 + iYn f @ 

where the first term is just the classical stretching. Now, just ss in (5) we 

6nd 
DIP 

<yR>Fe- J E= dk DHZ 
2pr a k - = -F’n(E) 

(7) 

The < +* > term gives no contribution after the ‘flat space’ subtraction. 

Thus we deduce that the fractional energy in the perturbation grows lin- 

early with time. Thii is because each mode recieves a boost kzy: z y 

on Hubble radius crossing. k%: remains constant thereafter ss the wave 

is conformally stretched. Thus all modes contribute equally to the en- 

ergy. In fact if one cuts off the k integral for k > (-‘, i.e. ‘smoothing 
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out’ the string on a scale [, one finds the total length is proportional to 

1 + sln(&) = (I?[)* with t = s. Writing L = & where R is the 

course-grained distance we find p, the fractal dimension of the string, is 

given by p = 1 + s. From this one sees that with cosmic strings of the 

Nielsen-Olesen type these quantum effects are usually small. This is because 

the width of the string is r: p-t/r and thii must be less than the Hubble 

radius in order for the string not to be ‘pulled apart’ into its constituent 

fields by the expansion. But if CC-‘/~ < H-’ the induced fluctuations are 

small and the fractal dimension close to unity. 

Now the above analysis is only valid for perturbations y smaller than 

their wavelength. But we are interested precisely in the case when this is 

not true - when a length of string larger than the length originally present 

is created per expansion time. The above analysis does indicate the possi- 

bility of thii happening - for large enough y we can apparently produce 

unlimited quantities of string per expansion time. Is this correct? For BT- 

bitrary large amplitude motions the string equations are in fact not very 

different from (1) [14] 

j; + 2H$A = t&$) (8) 

Here A E 1 - +‘, c2 3 $$ and o parametrises the length of the string. 

The most important term is A which couples the string to the background. 

Certainly for A = 0 there would be no string creation. However, classically 

< oz >= f for excited modes well inside the horizon, and thii is only 

reduced near the horizon, where most of the string creation occurs. So we 

have f < A < 1. In fact reducing A to ; results in Hankel functions of 

order fi instead of i in (3), with little diminution of the string creation 
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effect at Hubble radius crossing. What about cr? For helical waves we 

can take c to be independent of (I, and cwz = s. Now there are two 

effects which conspire to weaken the curvature term in (8) relative to that 

in (1). First (1 - fr) < 1 and second (&y)’ > (&A)” where z is the z 

component of the vector y. Both of these effects are in any csse of order 

unity. Following through the analysis from (1) we Bee. that weakening the 

y” term only increases the amplitude of the induced fluctuations. Thus 

the estimate of yi c i at Hubble radius crossing is still certainly valid. 

The most serious consequence of our liiesrised calculation is however 

to ignore the fact that creation of string modes larger than the horizon 

produces more string which will in turn produce further string. We can 

account for this in a phenomenological equation 

&Pa = -aHp, + @$. 

where the first term is the dilution of string density due to the expansion 

and the second is due to string creation. a and p are coefficients of order 

unity. For long strings such as in the calculation above, a = 2 and p = T, 

and a small energy perturbation obeys &(6p,a*) = zp,a* = con&, so 

6p,o* a t in agreement with (0) and (7). However the full solution is of 

course exponential growth of 6p,az. 

Now let us try to self-consistently feed back the effect of string creation 

into the expansion rate of the string-dominated universe. Assuming a flat 

universe (any exponential expansion would quickly make the universe very 

flat) we csn substitute yp, for H* in (9). Now we see from (9) there is an 

unstable fixed point at Ha = Hiti E y or p, = $$ E ~,a. If the density is 
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near p,~ then it remains nearly constant ss the universe expands. Thus the 

universe expands exponentially and quickly becomes flat and homogeneous. 

Exactly how we got into the state p w p,h in the first place remains 

a mystery at this point - for the moment one can only say that it is a 

phenomenological fact that sa we trace the universe back in time we are 

led into an exponentially expanding phase. 

It is interesting to compare the above formula for p,~ with that con- 

jectured by Aharonov et al.[7]. They equate the Hawking temperature g 

with the string limiting temperature Z’s,,, = (3)’ [12]. Thus they obtain 

HZ = 125. In fact if we are in four dimensions, with a = 2 (because 

highly convoluted strings behave like matter classically, p, cc aT3 [14]) and 

D = 2 so p = i ss above we recover exactly the same result! Of course as 

I said this is only an approximation to the true result - the coincidence is 

intriguing nevertheless. 

The trajactories of (9) are given, for p < p,~, by 

f&t = L + ln( 
h 

;+~;~,+cmst 

where H:di = Fp,a is the 5xed point Hubble constant and z = k.Thll is . 
shown in Figure (1). Clearly starting with p = p,,+(l-6),6 < 1 the density 

remains approximately constant for m iIn Hubble times. To obtaln 

enough inflation for example to ‘solve’ the horizon problem we require an 

initial value for 6 m e-lee % lo-“. 

This seems very small - if one assumes for example that 6 is Gaussian 

distributed about zero with dispersion o m -$ for example, where N FJ & 

is the number of long strings per Hubble volume, then the fraction of space 



where 6 is so small would be tiny. However the volume where 6 is small 

gets inflated by e3n.fifl, with the e-folding factor RIdit, = iIn( Thus the 

fraction of the present universe occupied by regions where 6 wss between 6 

and 6 + d6 ia proportional, for 6 < u, to 6-td6. Thus most of the universe 

would still be inflating! From this viewpoint, such a small initial value of 6 

in a region of the universe as old as ours would be very likely indeed. 

Let me summarise the findings of this paper. Ifwe follow our observable 

universe back in time into the very early universe, at a density p w (Gp)s~r, 

where p,l is the Planck density a phase transition occurs and the universe 

becomes dominated by very long string. As we proceed back to higher 

densities we approach p,h FJ (G@)p+ where the Hubble radius is z, ~1-4. 

The universe is expanding exponentially and in consequence has become 

very flat and homogeneous. At thii point the Hawking temperature of the 

De Sitter space is of the same order as the string limiting temperature. The 

mean separation of the strings is = lp(, the Planck length and one might 

expect that string interactions prevent the density growing any higher. 

The calculations reported here are very preliminary and certainly leave 

many questions unanswered. How large are the fluctuations in the initial 

De Sitter spacetime - does thii scenario have the same ‘fluctuation problem’ 

that most inflation scenarios do? What are the initial conditions for the 

universe (or perhaps just for our region of the universe) and how long does 

the exponentially expanding phase last? It is interesting to note that in a 

collapsing region of the universe, as argued above, the radiation density 

is limited by the presence of long strings - but is the string density itself 

limited, perhaps by string-string interactions ‘? If so, what happens to the 

9 



trajectories for which p > p,~? Lastly it would be very interesting to try 

and describe the ‘string driven inflation’ state in terms of string field theory, 

perhaps along the lines of [17]. 
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Figure Caption 

As the universe is traced back in time it becomes string dominated. 

The curve shows the string density p, as a function of time es one goes 

back still further. The string density asymptotically approaches a constant, 

p,a = $ FJ 10m3 of the Planck density for heterotic string for example. 
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